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SYNCHRONOUS DEDICATED FROCEDURES

Activation

2. Power on equipment.

2. When connected, identify your terminal to the network by entering

L C>$$SON XXXXXX (enter your sign-un identification code for XXXXXX)

K' ~(Exatup.'e: t,$$SON AA1234) Efq 7
3. The system will respond with:

UNIVAC's Telcon Network-Level XXX DCPID-XXX
SESSION PATH OPEN

4. Identify your site to the DROLS system by transmitting the following:

DSGNONS/TERMINAL ID
(Example: tSGNONS/ABCDE) N -o iTI $

5. The system will respond with:

*MSG ON1 SIGN-ON ACCEPTED

6. Enter your terminal ID as in the past. Entering of the terminal ID at this
point will be eliminated in the near future.

7. DROLS commands remain the same.

Termination

1. Enter @TERM@ and transmit.

2. The system will respond with:

THIS TERMINAL HAS BEEN TERMINATED

*MSG D07 PLEASE SIGN OFF TERMINAL

3. Disconnect (sign off) from the network by transmitting:

>$$SOFF

4. The system will respond with:

SESSION PATH CLOSED

5. Power off equipment.
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INTRODUCTI ON

This report deals with data from the TOAfIE/PDM systems at MI-site and A-site.

A Diophantine equation approach to ambiguity resolution for four phases is pre-

Ssented. Also the currently used Cubic algorithm is shown to be a variant of

this approach. Both algorithms are exercised against difficuit data recorded

at the sites from a high performance vehicle. Plots of cosine versus time are

included. They are self-explanatory. The algorithm presented here performs

better than the Cubic algorithm on this data.

A BRIEF REVIEW

Some faniliarity with the problem and the nature of the data is assurred. At

each site there are two orthogonal base lines. Eaca base line contains four
pairs of antennas with a phase meter for each pair. The distances spanned by

tT
each pair are ideally given by the vector bT . (43, 42, 36, 288) where 1 < X/2

(slightly less than one-half the wave lenath of the received siqnal). Unfor-

tunately the actual spacings of the antennas do not conform too well to these

proportions thus introducing modeling errors. The quantities to be ultimately

found are the differences in rance of the target between the two antennas o-,

each pair. These range differences are measured in cycles of the operating

frequency. Designate these range differences by the vector dT = (di, d2, d 3 ,

d4). The scaled output of the phase meters p j = 1, . . . , 4 is related to

the components of dT by the equations d. n. + pi 1, 4 where the
S . j,.

n. are positive or negative intecers and 0 < p < 1. The various alcorithms

attempt to recover tie nj. using the p. as inputs.



THE DIOPHANTINJE APPROACH

Again let bT = (43, 42, 36, 288) and d = n + p where n and p are vectors con-

sisting of the components n. and pj respectively. The planar wave front

assumption implies that

d=yb

or equivalently

n + p = yb, where y is a scalar,

Now there is an abundance of 3 by 4 intepar matrices A such that

Ab= 0

Hence

A (n + p) yAb =0

or

An = -Ap

The left side of the last equation, An, is clearly an integer vector so it is

expected that the right side, -Ap, is also an integer vector. If this werc: truE

then the system of Diophantine equations

An = -Ap = m

could by solved for the vector n, However in reality -Ap, when con'puted, is

never an integer vector repardless of what suitable matrix A is usea. The rca-

sons for this includc the facts that the antennas are not quite ccrrectly
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[4I positioned, che components of p are stored in finite data registers, and the

planar wavefront assumption is not exact. Lump any errors or discrepancies

in the vectors b and P into the error vector e. Now rewrite the equation as

An - -A(p+e) - m+Ae

where the error vector e is unknown. About the only thing is to attempt to

obtain the integer vector m by means of the nearest integer operator. Denote

the nearest integer of x by ANINT(x) in accord with FORTRAN. When the argument

is a vector the intent is a component-wise operation. This leads to the

Diophantine system

An = -ANINT(A (p+e)) = ANINT (rn+Ae)

Even though ANINT is a nonlinear operator, it is true that

ANINT (integer + real number) - integer + ANINT (real number)

Thus

An = -ANINT(A (p+e)) = ANINT ( Ae) + m

If any component of ANINT (Ae) is nonzero then an error is present. Worse

yet this error is amplified in the solution of the system of equations. These

errors cause spikes and step discontinuities in the cosine plots. Some of

the enclosed cosine plots illustrate this phenomenon.

There probably is no certain way of squashing ANINT(Ae)for all conditions, but

we can try to minimize the magnitudes o- the components of Ae. One way to get

a handle on this problem and also stale it more elegantly is to say we want to

minimize the max-norm (alias o-norm) of Ae. The max-norm of a vector is the

absolute value of the component having the largest magnitude. So it becomes

apparent that we want a matrix A whose components have small magnitudes or we

would like to minimize tIhe induced norm of A. We may not actually minimize this

induced norm (max la.j) but we try to make it small and hope for the best.

3



Start with trial matrix At such that Aob 0 0. For instance let

42 -43 0 0

0 6 -7 0

0 0 8 -1

A direct attack on the system A0 n = -ANINT(Aop) encounters awkward difficulties.

It is prudent to factor A0 in the following way:

42 -43 0 0

1 0 0 1 0 0 0 -6 7 -l 0

A= 1 1 0 0 7 0 0 0 0 8 -1

0 0 1 0 0 1 0 1 -l 0 0

Without getting involved in details, the equation A0 n = -A0 p can be left
multiplied by appropriate matrices resulting in Aln = -Ap where

42 -43 0 0

1 0 0. 0 -6 7 -1 0

A 0 1 0 0 0 0 8 -1

0 0 1 0 l -l 0 0

Notice that still Alb = 0. Furthermore the equation Aln = -ANINT(A 1 p)

does have an integer solution. However the top row of A1 contains components

of rather large magnitudes. In order to solve this Diophantine system we will

disguise somewhat the determination of the extra parameter caused by having

3 equations 4n 4 unknowns. This is done by an indirect use of the fictit'ons

"very coarse" measurement. Let B1 designate the righthand 4 by 4 matrix.

4
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That is to say

42 -43 0 0

B1 = -6 7 -1 0

0 0 8 -1

1 -1 0 0

Now let m = -ANINT(Blp). Next solve the system Bln i5. The solution is

given by n = B i. Since det(B,) = 1 it is guaranteed that 9, is an

integer matrix and the solution vector n has integer components. It is only

the last component of n that is of interest. This is given by

n4  -8 (m m + ) M+ 288 m4 . The graph entitled 'TEST' shows the plot

of (n4 + p4 )/(base in feet) or cos against time. This is a real disaster and

we suspect the large elements in the first r'ow of Al or equivalently 91.

Every detail is not being explained here but we are going to use elementary

row operations to transform the first three rows of B1 . We are interested in

only those row operations which do not change the magnitude of the determinant.

This means we can replace the i- row by minus the ith row and we can replace

.th th .thhthe i- row by ith row = i- row + integer jt- row. We apply these operations

with the objective of eliminating large magnitudes among the elements of B1 .

Specifically make the following simultaneous replacements: Ist row =

ntd rd d st d r
1 st row + 7 * 2- row + 3- row and 2- row -1- row -6*2n- row -3rd row.

This is tantamount to left multiplying B1 by 1 7 1 0

-1 -6 -1 0

0 0 1 0
0 0 0 1

5



(Call the resulting matrix B2 where

0 6 1 -l

B2 -6 1 -2 1
0 0 8 -0

1 -l 0 0

Since det(B2 ) = 1 it is assured that B2 is also an integer matrix. Now let

m = -ANINT(B 2 P). Solve B2n = for the integer vector n = B2 m. The last

component of n is now given by

n4 = 40m1 + 48m2 + 7m3 + 288m4

The graphs of the cosine using this algorithm are entitled 'DIOPH'. It

appears to work quite well on the relatively difficult data used here. Each

C graph of 'DIOPH' is followed by the corresponding graph of the Cubic

algorithm. One notable fact is that where the Cubic plot is smooth the

quantity n4 + P4 is bit by bit the same in both algorithms.

The Cubic Algorithm

The Cubic algorithm is currently in use. In order to describe it first define

the following two composite inputs.

PO= Pl which corresponds to a fictitious base lire nf length unity. This is

called the very coarse input.

Pc P2 - P3 which corresponds to a fictitious base line of length 6. This is

called the coarse input.

Now the algorithm caii be described as a three stage procedure.

nc = ANINT [6p° - Pc]

n3 = ANINT [6(nc + Pc) - P3]

n4 = ANINT [8(n 3 + P3 ) - p4 ]

6



The quantities n3 and n4 have exactly the same meanings as in the Diophantine

solution and n4 is the quantity of interest. At this point recall that

ANINT (integer + real number) = integer + ANINT (real number)

Apply this to the expression for n4 .

Sn4 :8n 3 + ANINT(8p 3

Substitute for n3o

i, n = 48n + 8 * ANINT(6pc - p3 + ANINT(8P 3 - p4 )

F -Continuing.

n = 48 * ANINT(6no - pc) + 8 . ANINT(6p, - p3 + ANINT(8p 3 - p4 )

Substitute for Pc.

n =48 * ANINT(6co - p2 +p 3 ) + 8 * ANINT( -7 + ANINT(4 P2+P)62 P3) +AIT8p3 -p 4)
For future convenience rearrange signs.

= -48 * ANINT(-6pO + P2 - p3 " 8 * ANINT(-6p 2 + 7p3 ) - ANINT(-8p 3 + pC)

In the description of a Diophantine eqa-tion approach we started with

Aon "AoP 42 -43 0 0

T Nn A 0 = 0 6 -7 0
nTi: (nl,n 2 ,n 3 ,n 4 )1 p (pl ,P2 ,P 3 p'P), A0 0 -7S0 0 8 -

Augment this system with the very coarse measurement P0  p p, 2" Now we have

nT = (nonl,n 2 ,n 3 ,n 4 ) and = (poPlP 2 ,P 3 ,P 4 )

The measurement p0 corresponds to a fictitious base line b, where b0  1.

Since I<X/2 it follows that always no = 0. Furthermore make the redefinitions

43 -l 0 0 0

T 0 42 -43 0 0
2b = (bo,blb2,b 3 ,b 4 ) and A0 = 0 0 6 -7 0

0 0 0 8 -1

7



I •,As before

* (n + p) = yb and Aob =0 hence Aon = -Aop approximately. This represents four

: equations in five unknowns. However it is known that n= 0 so one of the

unknowns is eliminated and we can discard the first column of A0 to produce

-1 0 0 0

42 -43 0 0S~B0
00 6 -7 0

0 0 8 -1

and

-TB = -Ap, n = (nl,n 2 ,n 3 ,n 4 )

Now we have four equations in four unknowns and B0  exists, but unfortunately
B0 is not an integer matrix. Again start factoring.

0 0 0 1 0 0 0 -l 0 0 0

-42 1 43 0 0 301 0 0 0 -1 1 0

0 0 1 0 0 0 1 0 0 6 -7 0

0 0 0 1 0 0 0 1 0 0 8 -1

Next left multiply both sides of Bn = -AoP by

1 0 0 0

42/301 1/301 -43/301 0

0 0 1 0

0 0 0 1

8i



This is most easily done using the factored expression for B The result is
P1

1- 0 0 0 nI -43 1 0 0 0 0

-0 -1 1 0 n 2  -6 0 1 -1 0 P

0 6 -7 0 n3  0 0 -6 7 0 P2

0 0 8 -1 n4  0 0 0 -8 1 P3
p4

Again force the lefthand side to have integer components.

-l 0 0 0 nI -43 1 0 0 0 P0

0 -1 1 0 n2  -6 0 1 -1 0
= ANINT P2

0 6 -7 0 n3 0 0 -6 7 0

0 0 8 -l n4  0 0 0 -8 1 P3
p4

Now the 4 x 4 matrix on the left side does have an integer inverse and the

solution to this system of equations is

nI -1 0 0 0 -43 1 0 0 0 P0
.7i

n2  0 -7 -1 0 -6 0 1 -1 0 p12 ANINT
n3  0-6- 0 0 0 -6 7 0 p2

P3
n4 0 -48 -8 -1 0 0 0 -8 1

P4



In particular

n -48*ANINT(-6pa + P2 " P3 ) -8*ANINT(-6P 2 + 7P3 ) -ANINT(-8p 3 + p4 )

which is the cubic algorithm.

10
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CUBIC R-SITE T-BRSELINE
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CUBIC M-SITE X-BRSELINE
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DIOPH M-SITE X-BRSELINE
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